Purpose: To devise an exercise that will demonstrate the localized hypoxic and ischemic conditions of muscle tissue in individuals with myofascial trigger points in the upper trapezius using near-infrared spectroscopy.

OBJECTIVE: To compare the recovery phases for oxygen saturation (StO$_2$), oxygenated hemoglobin (HbOxy), deoxygenated hemoglobin (HbDeOxy), and total hemoglobin concentration (THC) in the upper trapezius in isometric and isotonic shoulder shrug exercises.

Near-Infrared Spectroscopy (ISS OxiplexTS, Champaign, IL) is a non-invasive technique that transmits infrared rays through skin and superficial muscle providing a localized measurement of oxygen and blood flow dynamics.

Methods and Materials
- NIRS sensor was held in place on the upper trapezius with two-trials conducted on each side recording a 30-sec baseline period, 30-sec contraction, and 90-sec recovery period.
- All subjects were seated in an office chair with adjustable height:
 - Isometric Exercise: Performed a shoulder shrug while grasping a rope securely attached to the base of the chair.
 - Isotonic Exercise: Performed a shoulder shrug with an 18lb weight.

Results

Total Hemoglobin Concentration Dynamics for Isometric and Isotonic Exercises

Oxygen Saturation Dynamics for Isometric and Isotonic Exercises

Oxygen Saturation Rates of Recovery for Isometric and Isotonic Exercises

Results and Discussion

- The rates of recovery for StO$_2$, THC, and HbOxy during the isometric exercise were all significantly slower than the isotonic exercise.
- Isotonic exercise demonstrated an overshoot for THC and a more homogenous return of hemoglobin and StO$_2$ to baseline.
- Isometric exercise demonstrated a stepwise gradual return to THC baseline concentration, and almost linear recovery of StO$_2$.
- Intramuscular pressure was greater during the isometric contraction resulting in compression of arterioles, preventing relaxation of smooth muscle in vessel walls obstructing blood flow return and oxygen delivery.
- The isotonic exercise demonstrated better exponential regression fits for all parameters.

Recovery Rates for Isometric and Isotonic Exercises

<table>
<thead>
<tr>
<th></th>
<th>Isometric Exercise (sec$^{-1}$)</th>
<th>Isotonic Exercise (sec$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>StO$_2$</td>
<td>0.007±0.005 (R2=0.903)</td>
<td>0.005±0.002 (R2=0.720)</td>
</tr>
<tr>
<td>THC</td>
<td>0.011±0.002 (R2=0.856)</td>
<td>0.011±0.005 (R2=0.889)</td>
</tr>
<tr>
<td>HbOxy</td>
<td>-0.011±0.027 (R2=0.914)</td>
<td>-0.022±0.013 (R2=0.970)</td>
</tr>
<tr>
<td>HbDeOxy</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conclusion

- THC and oxygen recovery were limited during the isometric exercise, preventing the appearance of distinct recovery phases that could be used for comparison.
- The rigid muscle sensor limited placement along the upper trapezius, where measurement closer to the C7 would better demonstrate the location of possible myofascial trigger points.